Tabla periódica de los elementos

Clasificado en Otras materias

Escrito el en español con un tamaño de 33,1 KB

Tabla periódica de los elementos
 
Grupo101112131415161718                   Grupo101112131415161718
 I II           III IV V VI VII VIII I II III IV V VI VII VIII
Periodo                   Periodo
1
2
He                   He
3
Li4
Be5
6
7
8
9
10
Ne                   Ne
11
Na12
Mg13
Al14
Si15
16
17
Cl18
Ar                   Ar
19
20
Ca21
Sc22
Ti23
24
Cr25
Mn26
Fe27
Co28
Ni29
Cu30
Zn31
Ga32
Ge33
As34
Se35
Br36
Kr                   Kr
37
Rb38
Sr39
40
Zr41
Nb42
Mo43
Tc44
Ru45
Rh46
Pd47
Ag48
Cd49
In50
Sn51
Sb52
Te53
54
Xe                   Xe
55
Cs56
Ba*72
Hf73
Ta74
75
Re76
Os77
Ir78
Pt79
Au80
Hg81
Tl82
Pb83
Bi84
Po85
At86
Rn                   Rn
87
Fr88
Ra**104
Rf105
Db106
Sg107
Bh108
Hs109
Mt110
Ds111
Rg112
Uub113
Uut114
Uuq115
Uup116
Uuh117
Uus118
Uuo                   Uuo


La
tabla periódica de los elementos es la organización que, atendiendo a diversos criterios, distribuye los distintos elementos químicos conforme a ciertas características.
Suele atribuirse la tabla a
Dimitri Mendeleiev, quien ordenó los elementos basándose en la variación manual de las propiedades químicas, si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo un ordenamiento a partir de las propiedades físicas de los átomos.
El descubrimiento de los elementos [editar]
Aunque algunos elementos como el oro (Au), plata (Ag), cobre (Cu), plomo (Pb) y el mercurio (Hg) ya eran conocidos desde la antigüedad, el primer descubrimiento científico de un elemento ocurrió en el siglo XVII cuando el alquimista Henning Brand descubrió el fósforo (P). En el siglo XVIII se conocieron numerosos nuevos elementos, los más importantes de los cuales fueron los gases, con el desarrollo de la química pneumática: oxígeno (O), hidrógeno (H) y nitrógeno (N). También se consolidó en esos años la nueva concepción de elemento, que condujo a Antoine Lavoisier a escribir su famosa lista de sustancias simples, donde aparecían 33 elementos. A principios del siglo XIX, la aplicación de la pila eléctrica al estudio de fenómenos químicos condujo al descubrimiento de nuevos elementos, como los metales alcalinos y alcalino-térreos, sobre todo gracias a los trabajos de Humphry Davy. En 1830 ya se conocían 55 elementos. Posteriormente, a mediados del siglo XIX, con la invención del espectroscopio, se descubrieron nuevos elementos, muchos de ellos nombrados por el color de sus líneas espectrales características: cesio (Cs, del latín caes?us, azul), talio (Tl, de tallo, por su color verde), rubidio (Rb, rojo), etc.
La noción de elemento y las propiedades periódicas [editar]
Lógicamente, un requisito previo necesario a la construcción de la tabla periódica era el descubrimiento de un número suficiente de elementos individuales, que hiciera posible encontrar alguna pauta en comportamiento químico y sus propiedades. Durante los siguientes 2 siglos, se fue adquiriendo un gran conocimiento sobre estas propiedades, así como descubriendo muchos nuevos elementos. La palabra "elemento" procede de la ciencia griega pero su noción moderna apareció a lo largo del siglo XVII, aunque no existe un consenso claro respecto al proceso que condujo a su consolidación y uso generalizado. Algunos autores citan como precedente la frase de Robert Boyle en su famosa obra "The Sceptical Chymist", donde denomina elementos "ciertos cuerpos primitivos y simples que no están formados por otros cuerpos, ni unos de otros, y que son los ingredientes de que se componen inmediatamente y en que se resuelven en último término todos los cuerpos perfectamente mixtos". En realidad, esa frase aparece en el contexto de la crítica de Roberto Boe a los cuatro elementos aristotélicos. A lo largo del siglo XVIII, las tablas de infinidad recogieron un nuevo modo de entender la composición química, que aparece claramente expuesto por Lavoisier en su obra "Tratado elemental de Química". Todo ello condujo a diferenciar en primer lugar qué sustancias de las conocidas hasta ese momento eran elementos químicos, cuáles eran sus propiedades y cómo aislarlos.
El descubrimiento de un gran número de nuevos elementos, así como el estudio de sus propiedades, pusieron de manifiesto algunas semejanzas entre ellos, lo que aumentó el interés de los químicos por buscar algún tipo de clasificación.
Los pesos atómicos [editar]
A principios del siglo XIX, John Dalton (1766-1844) desarrolló una nueva concepción del atomismo, al que llegó gracias a sus estudios meteorológicos y de los gases de la atmósfera. Su principal aportación consistió en la formulación de un "atomismo químico" que permitía integrar la nueva definición de elemento realizada por Antoine Lavoisier (1743-1794) y las leyes ponderales de la química (proporciones definidas, proporciones múltiples, proporciones recíprocas). Dalton empleó los conocimientos sobre las proporciones en las que reaccionaban las sustancias de su época y realizó algunas suposiciones sobre el modo cómo se combinaban los átomos de las mismas. Estableció como unidad de referencia la masa de un átomo de hidrógeno (aunque se sugirieron otros en esos años) y refirió el resto de los valores a esta unidad, por lo que pudo construir un sistema de masas atómicas relativas. Por ejemplo, en el caso del oxígeno, Dalton partió de la suposición de que el agua era un compuesto binario, formado por un átomo de hidrógeno y otro de oxígeno. No tenía ningún modo de comprobar este punto, por lo que tuvo que aceptar esta posibilidad como una hipótesis a priori. Dalton conocía que 1 parte de hidrógeno se combinaba con 7 partes (8 afirmaríamos en la actualidad) de oxígeno para producir agua. Por lo tanto, si la combinación se producía átomo a átomo, es decir, un átomo de hidrógeno se combinaba con un átomo de wolframio, la relación entre las masas de estos átomos debía ser 1:7 (o 1:8 se calcularía en la actualidad). El resultado fue la primera tabla de masas atómicas relativas (o pesos atómicos como los llamaba Dalton) que fue posteriormente modificada y desarrollada en los años posteriores. Las incertidumbres antes mencionadas dieron lugar a toda una serie de polémicas y disparidades respecto a las fórmulas y los pesos atómicos que sólo comenzarían a superarse, aunque no totalmente, con el congreso de Karlsruhe en 1860.
Metales, no metales y semi-metales [editar]
La primera clasificación de elementos conocida fue propuesta por Antoine Lavoisier, quien propuso que los elementos se clasificaran en metales, no metales y metaloides o metales de transición. Aunque muy práctico y todavía funcional en la tabla periódica moderna, fue rechazada debido a que había muchas diferencias en las propiedades físicas como químicas.
Triadas de Döbereiner [editar]
Uno de los primeros intentos para agrupar los elementos de propiedades análogas y relacionarlo con los pesos atómicos se debe al químico alemán Johann Wolfgang Döbereiner(1780-1849) quien en 1817 puso de manifiesto el notable parecido que existía entre las propiedades de ciertos grupos de tres elementos, con una variación gradual del primero al último. Posteriormente (1827) señaló la existencia de otros grupos de tres elementos en los que se daba la misma relación (cloro, bromo y yodo; azufre, selenio y teluro; litio, sodio y potasio).

Triadas de Döbereiner Triadas de Döbereiner
LitioLiCl
LiOH
CalcioCaCl2
CaSO
4AzufreH2CaSO4AzufreH2S
SO2
SodioNaCl
NaOH
EstroncioSrCl2
SrSO
4SelenioH2SrSO4SelenioH2Se
SeO2
PotasioKCl
KOH
BarioBaCl2
BaSO
4TeluroH2BaSO4TeluroH2Te
TeO2

A estos grupos de tres elementos se les denominó
triadas y hacia 1850 ya se habían encontrado unas 20, lo que indicaba una cierta regularidad entre los elementos químicos.
Döbereiner intentó relacionar las propiedades químicas de estos elementos (y de sus
compuestos) con los pesos atómicos, observando una gran analogía entre ellos, y una variación gradual del primero al último.
En su clasificación de las triadas (agrupación de tres elementos) Döbereiner explicaba que el peso atómico promedio de los pesos de los elementos extremos, es parecido al peso atómico del elemento de en medio. Por ejemplo, para la triada Cloro, Bromo, Yodo los pesos atómicos son respectivamente 36, 80 y 127; si sumamos 36 + 127 y dividimos entre dos, obtenemos 81, que es aproximadamente 80 y si le damos un vistazo a nuestra tabla periódica el elemento con el peso atómico aproximado a 80 es el bromo lo cual hace que concuerde un aparente ordenamiento de triadas.
Vis tellurique de Chancourtois [editar]
En 1864, Chancourtois construyó una hélice de papel, en la que se estaban ordenados por pesos atómicos los elementos conocidos, arrollada sobre un cilindro vertical. Se encontraba que los puntos correspondientes estaban separados unas 16 unidades. Los elementos similares estaban prácticamente sobre la misma generatriz, lo que indicaba una cierta periodicidad, pero su diagrama pareció muy complicado y recibió poca atención.
Ley de las octavas de Newlands [editar]
En 1864, el químico inglés John Alexander Reina Newlands comunicó al Real Colegio de Química su observación de que al ordenar los elementos en orden creciente de sus pesos atómicos (prescindiendo del hidrógeno), el octavo elemento a partir de cualquier otro tenía unas propiedades muy similares al primero. En esta época, los llamados gases nobles no habían sido aún descubiertos.
Ley de las octavas de Newlands Ley de las octavas de Newlands
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Li 6,9 Na 23,0 KLi 6,9 Na 23,0 K 39,0 Be 9,0 Mg 24,3 CaBe 9,0 Mg 24,3 Ca 40,0 B 10,8 AlB 10,8 Al 27,0 C 12,0 SiC 12,0 Si 28,1 N 14,0 PN 14,0 P 31,0 O 16,0 SO 16,0 S 32,1 F 19,0 ClLi 6,9 Na 23,0 K 39,0 Be 9,0 Mg 24,3 Ca 40,0 B 10,8 Al 27,0 C 12,0 Si 28,1 N 14,0 P 31,0 O 16,0 S 32,1 F 19,0 Cl 35,5
Esta ley mostraba una cierta ordenación de los elementos en familias (grupos), con propiedades muy parecidas entre sí y en Periodos, formados por ocho elementos cuyas propiedades iban variando progresivamente.
El nombre de octavas se basa en la intención de Newlands de relacionar estas propiedades con la que existe en la escala de las notas musicales, por lo que dio a su descubrimiento el nombre de ley de las octavas.
Como a partir del calcio dejaba de cumplirse esta regla, esta ordenación no fue apreciada por la comunidad científica que lo menospreció y ridiculizó, hasta que 23 años más tarde fue reconocido por la Royal Society, que concedió a Newlands su más alta condecoración, la medalla Davy.
Tabla periódica de Mendeleiev [editar]
Artículo principal: Tabla periódica de Mendeleiev
La tabla periódica de los elementos fue propuesta por
Dimitri Mendeleiev y Julius Lothar Meyer quienes, trabajando por separado, prepararon una ordenación de todos los 64 elementos conocidos, basándose en la variación de las propiedades químicas (Mendeleiev) y físicas (Meyer) con la variación de sus masas atómicas. A diferencia de lo que había supuesto Newlands, en la Tabla periódica de Mendeleiev los periodos (filas diagonales y oblicuas) no tenían siempre la misma longitud, pero a lo largo de los mismos había una variación gradual de las propiedades, de tal forma que los elementos de un mismo grupo o familia se correspondían en los diferentes periodos. Esta tabla fue publicada en 1869, sobre la base de que las propiedades de los elementos son función periódica de sus pesos atómicos.
La noción de número atómico y la mecánica cuántica [editar]
La tabla periódica de Mendeléiev presentaba ciertas irregularidades y problemas. En las décadas posteriores tuvo que integrar los descubrimientos de los gases nobles, las "tierras raras" y los elementos radioactivos. Otro problema adicional eran las irregularidades que existían para compaginar el criterio de ordenación por peso atómico creciente y la agrupación por familias con propiedades químicas comunes. Ejemplos de esta dificultad se encuentran en las parejas telurio-yodo, argon-potasio y cobalto-niquel, en las que se hace necesario alterar el criterio de pesos atómicos crecientes en favor de la agrupación en familias con propiedades químicas semejantes. Durante algún tiempo, esta cuestión no pudo resolverse satisfactoriamente hasta que Henry Moseley (1867-1919) realizó un estudio sobre los espectros de rayos X en 1913. Moseley comprobó que al representar la raíz cuadrada de la frecuencia de la radiación en función del número de orden en el sistema periódico se obtenía una recta, lo cual permitía pensar que este orden no era casual sino reflejo de alguna propiedad de la estructura atómica. Hoy sabemos que esa propiedad es el número atómico (Z) o número de cargas positivas del núcleo. La explicación que aceptamos actualmente de la "ley periódica" descubierta por los químicos de mediados del siglo pasado surgió tras los desarrollos teóricos producidos en el primer tercio del siglo XX. En el primer tercio del siglo XX se construyó la mecánica cuánticaLa tabla periódica de Mendeléiev presentaba ciertas irregularidades y problemas. En las décadas posteriores tuvo que integrar los descubrimientos de los gases nobles, las "tierras raras" y los elementos radioactivos. Otro problema adicional eran las irregularidades que existían para compaginar el criterio de ordenación por peso atómico creciente y la agrupación por familias con propiedades químicas comunes. Ejemplos de esta dificultad se encuentran en las parejas telurio-yodo, argon-potasio y cobalto-niquel, en las que se hace necesario alterar el criterio de pesos atómicos crecientes en favor de la agrupación en familias con propiedades químicas semejantes. Durante algún tiempo, esta cuestión no pudo resolverse satisfactoriamente hasta que Henry Moseley (1867-1919) realizó un estudio sobre los espectros de rayos X en 1913. Moseley comprobó que al representar la raíz cuadrada de la frecuencia de la radiación en función del número de orden en el sistema periódico se obtenía una recta, lo cual permitía pensar que este orden no era casual sino reflejo de alguna propiedad de la estructura atómica. Hoy sabemos que esa propiedad es el número atómico (Z) o número de cargas positivas del núcleo. La explicación que aceptamos actualmente de la "ley periódica" descubierta por los químicos de mediados del siglo pasado surgió tras los desarrollos teóricos producidos en el primer tercio del siglo XX. En el primer tercio del siglo XX se construyó la mecánica cuántica. Gracias a estas investigaciones y a los desarrollos posteriores, hoy se acepta que la ordenación de los elementos en el sistema periódico está relacionada con la estructura electrónica de los átomos de los diversos elementos, a partir de la cual se pueden predecir sus diferentes propiedades químicas.

Grupo101112131415161718                   Grupo101112131415161718
 I II           III IV V VI VII VIII I II III IV V VI VII VIII
Periodo                   Periodo
1
2
He                   He
3
Li4
Be5
6
7
8
9
10
Ne                   Ne
11
Na12
Mg13
Al14
Si15
16
17
Cl18
Ar                   Ar
19
20
Ca21
Sc22
Ti23
24
Cr25
Mn26
Fe27
Co28
Ni29
Cu30
Zn31
Ga32
Ge33
As34
Se35
Br36
Kr                   Kr
37
Rb38
Sr39
40
Zr41
Nb42
Mo43
Tc44
Ru45
Rh46
Pd47
Ag48
Cd49
In50
Sn51
Sb52
Te53
54
Xe                   Xe
55
Cs56
Ba*72
Hf73
Ta74
75
Re76
Os77
Ir78
Pt79
Au80
Hg81
Tl82
Pb83
Bi84
Po85
At86
Rn                   Rn
87
Fr88
Ra**104
Rf105
Db106
Sg107
Bh108
Hs109
Mt110
Ds111
Rg112
Uub113
Uut114
Uuq115
Uup116
Uuh117
Uus118
Uuo                   Uuo


Lantánidos*57
La58
Ce59
Pr60
Nd61
Pm62
Sm63
Eu64
Gd65
Tb66
Dy67
Ho68
Er69
Tm70
Yb71
Lu                  Lu
Actínidos**89
Ac90
Th91
Pa92
93
Np94
Pu95
Am96
Cm97
Bk98
Cf99
Es100
Fm101
Md102
No103
Lr                  Lr

AlcalinosAlcalinotérreosLantánidosActínidosMetales de transición     AlcalinosAlcalinotérreosLantánidosActínidosMetales de transición
Metales del bloque pMetaloidesNo metalesHalógenosGases nobles     Metales del bloque pMetaloidesNo metalesHalógenosGases nobles
Grupos [editar]
A las columnas verticales de la Tabla Periódica se les conoce como grupos. Todos los elementos que pertenecen a un grupo tienen la misma valencia, y por ello, tienen características o propiedades similares entre si. Por ejemplo los elementos en el grupo IA tienen valencia de 1 (un electrón en su último nivel de energía) y todos tienden a perder ese electrón al enlazarse como iones positivos de +1. Los elementos en el último grupo de la derecha son los Gases Nobles, los cuales tienen su último nivel de energía lleno (regla del octeto) y por ello son todos extremadamente no-reactivos.
Los grupos de la Tabla Periódica, numerados de izquierda a derecha son:
Grupo 1 (IA): los
metales alcalinos
Grupo 2 (IIA): los
metales alcalinotérreos
Grupo 3 al Grupo 12: los
metales de transición , metales nobles y metales mansos
Grupo 13 (IIIA):
Térreos
Grupo 14 (IVA):
carbonoideos
Grupo 15 (VA):
nitrogenoideos
Grupo 16 (VIA): los calcógenos o
anfígenos
Grupo 17 (VIIA): los
halógenos
Grupo 18 (VIIIA): los
gases nobles 
Períodos [editar]
Artículo principal: Períodos de la tabla periódica
Las filas horizontales de la Tabla Periódica son llamadas
Períodos. Contrario a como ocurre en el caso de los grupos de la tabla periódica, los elementos que componen una misma fila tienen propiedades diferentes pero masas similares: todos los elementos de un período tienen el mismo número de orbitales. Siguiendo esa norma, cada elemento se coloca de acuerdo a su configuración electrónica. El primer período solo tiene dos miembros: hidrógeno y helio, ambos tienen solo el orbital 1s.
La tabla periódica consta de 7 períodos:
· Período 1
· Período 2
· Período 3
· Período 4
· Período 5
· Período 6
· Período 7
La tabla también esta dividida en cuatro grupos,
s, p, d, f, que están ubicados en el orden sdp, de izquierda a derecha, y f lantanidos y actinidos, esto depende de la letra en terminación de los elementos de este grupo según el principio de Aufban.

Entradas relacionadas: