Explorando la Distribución Normal, Binomial, Varianza y Desviación Estándar: Conceptos Clave

Clasificado en Matemáticas

Escrito el en español con un tamaño de 3,52 KB

Distribución Normal, Binomial, Varianza y Desviación Estándar: Conceptos Fundamentales

Distribución Normal (Gaussiana)

En estadística y probabilidad, la distribución normal, también conocida como distribución de Gauss o distribución gaussiana, es una de las distribuciones de probabilidad de variable continua que aparece con más frecuencia en fenómenos reales. La gráfica de su función de densidad tiene una forma acampanada y es simétrica respecto de un determinado parámetro estadístico. Esta curva se conoce como campana de Gauss y es el gráfico de una función gaussiana. La importancia de esta distribución radica en que permite modelar numerosos fenómenos naturales, sociales y psicológicos.

Aunque los mecanismos que subyacen a gran parte de este tipo de fenómenos son desconocidos, debido a la enorme cantidad de variables incontrolables que intervienen, el uso del modelo normal puede justificarse asumiendo que cada observación se obtiene como la suma de unas pocas causas independientes. De hecho, la estadística es un modelo matemático que sólo permite describir un fenómeno, sin explicación alguna. Para la explicación causal es preciso el diseño experimental, de ahí que al uso de la estadística en psicología y sociología sea conocido como método correlacional. La distribución normal también es importante por su relación con la estimación por mínimos cuadrados, uno de los métodos de estimación más simples y antiguos.

Distribución Binomial

En estadística, la distribución binomial es una distribución de probabilidad discreta que mide el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí, con una probabilidad fija p de ocurrencia del éxito entre los ensayos. Un experimento de Bernoulli se caracteriza por ser dicotómico, esto es, sólo son posibles dos resultados. A uno de estos se denomina éxito y tiene una probabilidad de ocurrencia p y al otro, fracaso, con una probabilidad q = 1 - p. En la distribución binomial el anterior experimento se repite n veces, de forma independiente, y se trata de calcular la probabilidad de un determinado número de éxitos.

Para n = 1, la binomial se convierte, de hecho, en una distribución de Bernoulli. Para representar que una variable aleatoria X sigue una distribución binomial de parámetros n y p, se escribe: X~B(n,p). La distribución binomial es la base del test binomial de significación estadística.

Varianza

La varianza es una medida de dispersión definida como la esperanza del cuadrado de la desviación de dicha variable respecto a su media. Está medida en unidades distintas de las de la variable. Por ejemplo, si la variable mide una distancia en metros, la varianza se expresa en metros al cuadrado.

Desviación Estándar

La desviación estándar es la raíz cuadrada de la varianza, y es una medida de dispersión alternativa expresada en las mismas unidades de los datos de la variable objeto de estudio. La varianza tiene como valor mínimo 0. Hay que tener en cuenta que la varianza puede verse muy influida por los valores atípicos y no se aconseja su uso cuando las distribuciones de las variables aleatorias tienen colas pesadas. En tales casos se recomienda el uso de otras medidas de dispersión más robustas.

Entradas relacionadas: