Explorando las Líneas, Ángulos y Figuras Geométricas Fundamentales

Clasificado en Plástica y Educación Artística

Escrito el en español con un tamaño de 3,56 KB

Fundamentos de Geometría: Líneas y Ángulos

La **línea** es una sucesión ilimitada de puntos que pueden ser:

  • **Línea recta**: Sucesión de puntos en una única dirección.
  • **Línea curva**: Sucesión de puntos que cambian constantemente de dirección.
  • **Línea quebrada**: Sucesión de distintas líneas rectas con direcciones diferentes.
  • **Línea sinuosa**: Sucesión de líneas curvas.
  • **Línea mixtilínea**: Sucesión de rectas y curvas.
  • **Línea curvilínea**: Sucesión de curvas que cambian de dirección de modo quebrado.

Recta - Sinuosa

Curva - Curvilínea

Mixtilínea - Quebrada

Observando la línea recta se pueden obtener dos nuevos elementos geométricos:

  1. **Semirrecta**: Porción de recta limitada por un punto en uno de sus extremos.
  2. **Segmento**: Porción de recta limitada por dos puntos.

Mediatriz de un Segmento y Teorema de Tales

La **mediatriz de un segmento** es el lugar geométrico de todos aquellos puntos de un plano que tienen igual distancia respecto a los extremos de un segmento.

El **Teorema de Tales** establece que cuando un par de rectas concurrentes son cortadas por un haz de rectas paralelas entre sí, los segmentos que se producen en las rectas concurrentes son proporcionales entre sí. La proporción se establece entre el segmento A y B de una de las rectas concurrentes con otro segmento A prima y B prima de las otras concurrentes.

Se llama **proporción** a la relación de dos magnitudes. Se llama **proporcionalidad** a una relación de proporciones, la cual en el teorema de Tales es constante.

  • **Proporción**: Relación entre dos magnitudes, se expresa mediante una fracción A/B.
  • **Proporcionalidad**: Es la relación entre dos o más proporciones, se expresa mediante la igualdad de fracciones.

Aplicación del teorema de Tales: División de un segmento en partes iguales.

Ángulos

Un **ángulo** es la porción de plano comprendida entre dos rectas que se cortan. Al punto de corte de las dos rectas se le llama **vértice**, y a las rectas que lo forman, **lados**. Los ángulos se nombran con letras minúsculas del alfabeto griego y el símbolo de ángulo.

Alfa - Beta - Gamma - Delta

Clasificación de Ángulos

Los ángulos se clasifican según su medida en:

  • **Agudo**: Menos de 90°.
  • **Recto**: Igual a 90°.
  • **Obtuso**: Mayor de 90°.
  • **Llano**: 180°.

Bisectriz y Exincentro

La **bisectriz** es el lugar geométrico de todos aquellos puntos que equidistan (tienen igual distancia) de los lados de un ángulo.

El **exincentro** es el punto de corte de las bisectrices exteriores de un triángulo.

Triángulos y Polígonos

El **cartabón** es un triángulo rectángulo escaleno cuyos ángulos valen 30°, 60° y 90°. Una escuadra es similar a un triángulo escaleno, mientras que un cartabón se asemeja a un isósceles.

Un **triángulo** es un polígono convexo de 3 lados y 3 ángulos. Se nombra con letras mayúsculas en sus vértices y se describe con el nombre de estos con el símbolo del triángulo sobre las 3 letras. Los lados se nombran con letra minúscula y reciben el nombre de su vértice opuesto.

3 Triángulo - 4 Cuadrado - 5 Pentágono - 6 Hexágono - 7 Heptágono - 8 Octógono - 9 Nonágono - 10 Decágono - 11 Undecágono - 12 Dodecágono - 15 Pentadecágono

Entradas relacionadas: