Prueba cnna 7.8.9
Clasificado en Otras materias
Escrito el en español con un tamaño de 10,54 KB
Trama: el PDU de la capa de enlace de datos. Nodo: la notación de la Capa 2 para dispositivos de red conectados a un medio común.
Medios/medio (físico)*: los medios físicos para la transferencia de información entre dos nodos. Es importante comprender el significado de las palabras medio y medios en el contexto de este capítulo. Aquí, estas palabras se refieren al material que realmente transporta las señales que representan los datos transmitidos. Los medios son el cable de cobre, la fibra óptica físicos o el entorno a través de los cuales la señal viaja. En este capítulo, medios no se refiere a programación de contenido tal como audio, animación, televisión y video, como se utiliza al referirse a contenidos digitales y multimedia.
Red (física)**: dos o más nodos conectados a un medio común. La capa de enlace de datos es responsable del intercambio de tramas entre nodos a través de los medios de una red física.Una red física es diferente de una red lógica. Las redes lógicas se definen en la capa de red mediante la configuración del esquema de direccionamiento jerárquico. Las redes físicas representan la interconexión de dispositivos de medios comunes. Algunas veces, una red física también es llamada segmento de red.
Control de enlace lógico El control de enlace lógico (LLC) coloca información en la trama que identifica qué protocolo de capa de red está siendo utilizado por la trama. Esta información permite que varios protocolos de la Capa 3, tales como IP e IPX, utilicen la misma interfaz de red y los mismos medios.
Control de acceso al medio El control de acceso al medio (MAC) proporciona a la capa de enlace de datos el direccionamiento y la delimitación de datos de acuerdo con los requisitos de señalización física del medio y al tipo de protocolo de capa de enlace de datos en uso.
iso: HDLC ( control de enlace de datos de alto nivel)
IEEE: 802.2 (LLC)/802.3(Ethernet)/802.5(token Ring)802.11(wireless LAN)
ITU: Q.922(Frame Relay)/ Q.921(ISDN/ HDLC
ansi: ADCP 3T9.5
CSMA/Detección de colisión En CSMA/Detección de colisión (CSMA/CD), el dispositivo monitorea los medios para detectar la presencia de una señal de datos. Si no hay una señal de datos, que indica que el medio está libre, el dispositivo transmite los datos. Si luego se detectan señales que muestran que otro dispositivo estaba transmitiendo al mismo tiempo, todos los dispositivos dejan de enviar e intentan después. Las formas tradicionales de Ethernet usan este método.
CSMA/Prevención de colisiones En CSMA/Prevención de colisiones (CSMA/CA), el dispositivo examina los medios para detectar la presencia de una señal de datos. Si el medio está libre, el dispositivo envía una notificación a través del medio, sobre su intención de utilizarlo. El dispositivo luego envía los datos. Este método es utilizado por las tecnologías de redes inalámbricas 802.11.
El objetivo de la capa física es crear la señal óptica, eléctrica o de microondas que representa a los bits en cada trama.
Codificación La codificación es un método utilizado para convertir un stream de bits de datos en un código predefinido. Los códigos son grupos de bits utilizados para ofrecer un patrón predecible que pueda reconocer tanto el emisor como el receptor. La utilización de patrones predecibles permite distinguir los bits de datos de los bits de control y ofrece una mejor detección de errores en los medios.
Señalización La capa física debe generar las señales inalámbricas, ópticas o eléctricas que representan el "1" y el "0" en los medios. El método de representación de bits se denomina método de señalización. Los estándares de capa física deben definir qué tipo de señal representa un "1" y un "0". Esto puede ser tan sencillo como un cambio en el nivel de una señal eléctrica, un impulso óptico o un método de señalización más complejo.
ancho de banda digital mide la cantidad de información que puede fluir desde un lugar hacia otro en un período de tiempo determinado.
Los tipos de cable con blindaje o trenzado de pares de alambre están diseñados para minimizar la degradación de señales debido al ruido electrónico.
La fibra óptica monomodo transporta un sólo rayo de luz, generalmente emitido desde un láser. Este tipo de fibra puede transmitir impulsos ópticos en distancias muy largas, ya que la luz del láser es unidireccional y viaja a través del centro de la fibra.
La fibra óptica multimodo a menudo utiliza emisores LED que no generan una única ola de luz coherente. En cambio, la luz de un LED ingresa a la fibra multimodo en diferentes ángulos. Los tendidos extensos de fibra pueden generar impulsos poco claros al recibirlos en el extremo receptor ya que la luz que ingresa a la fibra en diferentes ángulos requiere de distintos períodos de tiempo para viajar a través de la fibra. Este efecto, denominado dispersión modal, limita la longitud de los segmentos de fibra multimodo.
Los medios inalámbricos transportan señales electromagnéticas mediante frecuencias de microondas y radiofrecuencias que representan los dígitos binarios de las comunicaciones de datos. Como medio de red, el sistema inalámbrico no se limita a conductores o canaletas, como en el caso de los medios de fibra o de cobre.
IEEE estándar 802.11: Comúnmente denominada Wi-Fi, se trata de una tecnología LAN inalámbrica (Red de área local inalámbrica, WLAN) que utiliza una contención o sistema no determinista con un proceso de acceso a los medios de Acceso múltiple con detección de portadora/Prevención de colisiones (CSMA/CA). IEEE estándar 802.15: Red de área personal inalámbrica (WPAN) estándar, comúnmente denominada "Bluetooth", utiliza un proceso de emparejamiento de dispositivos para comunicarse a través de una distancia de 1 a 100 metros. IEEE estándar 802.16: Comúnmente conocida como WiMAX (Interoperabilidad mundial para el acceso por microondas), utiliza una topología punto a multipunto para proporcionar un acceso de ancho de banda inalámbrico. Sistema global para comunicaciones móviles (GSM): Incluye las especificaciones de la capa física que habilitan la implementación del protocolo Servicio general de radio por paquetes (GPRS) de capa 2 para proporcionar la transferencia de datos a través de redes de telefonía celular móvil.
Estándares de IEEE La primera LAN (Red de área local) del mundo fue la versión original de Ethernet. Robert Metcalfe y sus compañeros de Xerox la diseñaron hace más de treinta años. El primer estándar de Ethernet fue publicado por un consorcio formado por Digital Equipment Corporation, Intel y Xerox (DIX). Metcalfe quería que Ethernet fuera un estándar compartido a partir del cual todos se podían beneficiar, de modo que se lanzó como estándar abierto. Los primeros productos que se desarrollaron a partir del estándar de Ethernet se vendieron a principios de la década de 1980. En 1985, el comité de estándares para Redes Metropolitanas y Locales del Instituto de Ingenieros Eléctricos y Electrónicos (IEEE) publicó los estándares para las LAN. Estos estándares comienzan con el número 802. El estándar para Ethernet es el 802.3. El IEEE quería asegurar que sus estándares fueran compatibles con los del modelo OSI de la Organización Internacional para la Estandarización (ISO). Para garantizar la compatibilidad, los estándares IEEE 802.3 debían cubrir las necesidades de la Capa 1 y de las porciones inferiores de la Capa 2 del modelo OSI. Como resultado, ciertas pequeñas modificaciones al estándar original de Ethernet se efectuaron en el 802.3.
La subcapa LLC toma los datos del protocolo de la red, que generalmente son un paquete IPv4, y agrega información de control para ayudar a entregar el paquete al nodo de destino. La Capa 2 establece la comunicación con las capas superiores a través del LLC. El LLC se implementa en el software y su implementación depende del equipo físico. En una computadora, el LLC puede considerarse como el controlador de la Tarjeta de interfaz de red (NIC). El controlador de la NIC (Tarjeta de interfaz de red) es un programa que interactúa directamente con el hardware en la NIC para pasar los datos entre los medios y la subcapa de Control de Acceso al medio (MAC).
Encapsulación de datos La encapsulación de datos proporciona tres funciones principales: Delimitación de trama Direccionamiento Detección de errores El proceso de encapsulación de datos incluye el armado de la trama antes de la transmisión y el análisis de la trama al momento de recibir una trama. Cuando forma una trama, la capa MAC agrega un encabezado y un tráiler a la PDU de Capa 3. La utilización de tramas facilita la transmisión de bits a medida que se colocan en los medios y la agrupación de bits en el nodo receptor. El proceso de entramado ofrece delimitadores importantes que se utilizan para identificar un grupo de bits que componen una trama. Este proceso ofrece una sincronización entre los nodos transmisores y receptores. El proceso de encapsulación también posibilita el direccionamiento de la capa de Enlace de datos. Cada encabezado Ethernet agregado a la trama contiene la dirección física (dirección MAC) que permite que la trama se envíe a un nodo de destino. Una función adicional de la encapsulación de datos es la detección de errores. Cada trama de Ethernet contiene un tráiler con una comprobación cíclica de redundancia (CRC) de los contenidos de la trama. Una vez que se recibe una trama, el nodo receptor crea una CRC para compararla con la de la trama. Si estos dos cálculos de CRC coinciden, puede asumirse que la trama se recibió sin errores.
Control de acceso al medio La subcapa MAC controla la colocación de tramas en los medios y el retiro de tramas de los medios. Como su nombre lo indica, se encarga de administrar el control de acceso al medio. Esto incluye el inicio de la transmisión de tramas y la recuperación por fallo de transmisión debido a colisiones.