Exponentes y Radicales
Clasificado en Matemáticas
Escrito el en
español con un tamaño de 10,44 KB
Exponentes y Radicales
Radicales
A continuación definiremos la principal raíz enésima de un numero real.
Definición de

Sean n un numero entero positivo mayor de 1 y a , un numero real.
1) Si
, entonces 
2) Si
, entonces
es el número real positivo b tal que
.3) a) Si
y n es non, entonces
es el numero real negativo b tal que
.b) Si
y n es par, entonces
no es un número real. Si n=2 se escribe
en lugar de
y
se llama raíz cuadrada principal de o simplemente raíz cuadrada de a. El número
es la raíz cúbica de a. Ilustraciones:
Observa que
porque , por definición, las raíces de números reales positivos son positivas. El símbolo
se lee "más o menos".Para completar nuestra terminología, la expresión
es un radical, el número a se llama radicando y n es el índice del radical. El símbolo
es el signo radical.Si
, entonces
; esto es,
.En general se presenta la siguiente tabla de propiedades.
Propiedades de
(n es un entero positivo).Propiedad | Ejemplo |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
para todo numero real x. En particular, si
entonces
sin embargo si
, entonces
, que es positiva.Las tres leyes siguientes son verdaderas para los enteros positivos m y n, siempre que existan las raíces indicadas; es decir, siempre que las raíces sean números reales.
Ley | Ejemplo |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
Advertencias respecto a errores comunes:
Simplificar un radical quiere decir eliminar factores del radical hasta que el radicando contenga sólo exponente igual o mayor que el índice del radical y el índice sea tan pequeño como sea posible.
Eliminación de factores de radicales.
Simplifica el radical (todas las letras denotan números reales positivos):
a)
b)
c)
Solución
a)
b)
c)
Si al denominador de un cociente contiene un factor de la forma
con k < n y a > 0 entonces al multiplicar numerador y denominador por
eliminaremos el radical del denominador porque: 
Este proceso se llama racionalización del denominador.
Factor en el denominador | Multiplicar numerador y denominador por | Factor resultante |
![]() | ![]() | ![]() |
Ejemplos
Racionalización de denominadores
Racionaliza:
a)
b) 
Solución
a)

b)
Este proceso algebraico, en cursos avanzados puede complicar el calculo para la resolución del problema, es por ello que se recomienda analizar y seleccionar el procedimiento adecuado.
Definición de exponentes racionales
Sea m/n un numero racional, donde n es un entero positivo mayor de 1. Si a es un numero real tal que existe
, entonces
Nota:
Las leyes de los exponentes son ciertas para exponentes racionales e irracionales.
Simplificación de potencias racionales
Simplifica:
a)
b) 
Solución
a)
b)
















