Bio3

Clasificado en Biología

Escrito el en español con un tamaño de 5,26 KB

LA CADENA RESPIRATORIA. CONCEPTO Y OBJETIVOS Concepto: Consiste en un transporte de electrones desde las coenzimas reducidas, NADH+H+ o FADH2, hasta el oxígeno. Este transporte se realiza en la membrana de las crestas mitocondriales. Objetivos: Es en este proceso donde se obtendrá la mayor parte de la energía contenida en la glucosa y otros compuestos orgánicos, que será almacenada en forma de ATP. Al mismo tiempo se recuperarán las coenzimas transportadoras de electrones en su forma oxidada, lo que permitirá la oxidación de nuevas moléculas de glucosa y de otras sustancias orgánicas. Como producto de desecho se obtendrá agua LA CADENA RESPIRATORIA: MECANISMO En la membrana de las crestas mitocondriales se va a realizar un transporte de electrones desde el NADH o el FADH2 hasta el oxígeno, tal y como se indica en la figura. Este transporte de electrones va a generar un transporte de protones por parte de los complejos I, II y III desde la matriz hacia el espacio intermembrana. Cada complejo será capaz de bombear dos protones. La salida de estos protones a través de las ATPasas servirá para sintetizar ATP, 1 ATP por cada dos protones, de forma similar a como sucedía en los cloroplastos. El NADH es capaz de reducir al Complejo I por lo que se obtendrán 3ATP por cada molécula de NADH. El FADH2 no puede reducir al complejo I y cede sus dos electrones a la Co-Q (coenzima Q). Esta es la razón por la que el FADH2 sólo genera 2 ATP Los electrones serán cedidos finalmente al oxígeno que junto con dos protones del medio darán una molécula de H2O // 2H+ + 1/2O2 + 2e- ð H2 o Hemos visto que cada NADH que se origina en las mitocondrias rinde 3 ATP. Pero, en los eucariotas, el NADH que se origina en el hialoplasma, en la glucolisis, sólo puede originar 2 ATP. Esto es debido a que este NADH no puede atravesar la membrana mitocondrial y debe ceder sus electrones a una sustancia intermediaria que a su vez los cede al FAD que hay en el interior de la mitocondria, lo que no sucede en los procariotas. 5-B.3) LAS FERMENTACIONES ANAERÓBICAS La oxidación del NADH+H+ y del FADH2 en la cadena respiratoria tiene como aceptor final de los electrones al oxígeno. De esta manera, el NAD+ se recupera y la glucolisis y el ciclo de Krebs pueden mantenerse

Si no hay oxígeno, el NADH+H+ y el FADH2 se acumulan y los procesos de obtención de energía se interrumpen.En estas condiciones, condiciones anaerobias o de falta de oxígeno, ciertos microorganismos y, por ejemplo, nuestras células musculares, recuperan las coenzimas oxidadas por diversas vías metabólicas conocidas bajo el nombre de fermentaciones anaeróbicas. Es más, para algunos microorganismos, los anaerobios estrictos, las fermentaciones son su única fuente de energía. Se les llama anaerobios estrictos porque no pueden vivir en un medio que contenga oxígeno ya que éste les es letal. Otros, los anaerobios facultativos, utilizan estas vías como mecanismo de emergencia durante los períodos en los que no disponen de oxígeno. En las fermentaciones, la glucosa no se degrada totalmente a CO2 y H2O, sino que se produce una degradación incompleta de la cadena carbonada. Según el producto obtenido, tendremos las siguientes fermentaciones: A) FERMENTACIÓN LÁCTICA La realizan las bacterias del yogur y, por ejemplo, las células musculares, cuando no reciben un aporte suficiente de oxígeno, lo que sucede cuando se lleva a cabo un ejercicio físico intenso. En la fermentación láctica, el ácido pirúvico es reducido a ácido láctico por medio del NADH+H+. De esta manera el NAD+ se recupera y pueden ser degradadas nuevas moléculas de glucosa. B) FERMENTACIÓN ALCOHÓLICA En la fermentación alcohólica el ácido pirúvico es transformado en alcohol etílico o etanol. Esta fermentación la realizan, por ejemplo, las levaduras del género Saccharomyces. Se trata de un proceso de gran importancia industrial que, dependiendo del tipo de levadura, dará lugar a una gran variedad de bebidas alcohólicas: cerveza, vino, sidra, etc. En la fabricación del pan se le añade a la masa una cierta cantidad de levadura, la fermentación del almidón de la harina hará que el pan sea más esponjoso por las burbujas de CO2. En este último caso el alcohol producido desaparece durante el proceso de cocción. La fermentación alcohólica tiene el mismo objetivo que la fermentación láctica: la recuperación del NAD+ en condiciones anaeróbicas. En la fermentación alcohólica el ac. pirúvico se descarboxila trasformándose en acetaldehído y este es reducido por el NADH a alcohol etílico.

Entradas relacionadas: