Apuntes, resúmenes, trabajos, exámenes y ejercicios de Matemáticas de Bachillerato

Ordenar por
Materia
Nivel

Análisis de una Economía Clásica

Enviado por jeje y clasificado en Matemáticas

Escrito el en español con un tamaño de 2,91 KB

1. Introducción

Este documento analiza una economía clásica caracterizada por las siguientes ecuaciones:

2.1 Función de Producción:

y = 2 (Lk)1/2

2. Análisis de Equilibrio

2.1 Nivel de Empleo de Equilibrio

Igualando la oferta y la demanda de trabajo obtenemos el salario real de equilibrio (W/P)* y el nivel de empleo de equilibrio (L*).

19 - 1,5 (W/P) = -2 + 9(W/P)

21 = 10,5 (W/P)

(W/P)* = 2 (Salario real de equilibrio)

Sustituimos este resultado en la función de oferta de trabajo y obtenemos el nivel de empleo de equilibrio:

Ls = -2 + 9(W/P)

L* = 16

2.2 Determinación del Valor de la Producción de Pleno Empleo

y = 2 (Lk)1/2

y* = 64

2.3 Determinación del Nivel de Precios

La demanda agregada es: y = c + i + g

64 = 11,6 + 0,8 (1 - 0.25) 64 + 10 - 20r +... Continuar leyendo "Análisis de una Economía Clásica" »

Muestreo y Medidas Estadísticas: Guía Completa

Clasificado en Matemáticas

Escrito el en español con un tamaño de 2,44 KB

Muestreo

Tiene como finalidad que la muestra sea lo suficientemente representativa y conocer sus características. Es el proceso de selección de una porción de datos que pertenecen a un conjunto de elementos denominado población o universo.

Muestreo Probabilístico

Todos los elementos a estudiar tienen la misma posibilidad de formar parte de la muestra.

M. Aleatorio Simple

Se elige totalmente al azar entre toda la población.

M. Estratificado

Se clasifican distintas partes existentes de la población según características propias de cada parte.

Afijación

Importancia relativa dada a cada sección estudiada por separado.

M. de Conglomerados

Las secciones ya existen naturalmente.

M. Sistemático

Solo el primer elegido es aleatorio, luego a partir de... Continuar leyendo "Muestreo y Medidas Estadísticas: Guía Completa" »

Cálculo del Tamaño de Muestra: Fundamentos y Fórmulas Esenciales para Investigación

Clasificado en Matemáticas

Escrito el en español con un tamaño de 3,66 KB

Determinación del Tamaño de Muestra: Un Paso Crucial en la Investigación

04/11/2015 | ES

La determinación del tamaño de la muestra es un paso fundamental en cualquier estudio de investigación, especialmente en el ámbito de los mercados. Este proceso debe justificarse adecuadamente, considerando el planteamiento del problema, las características de la población, los objetivos específicos y el propósito general de la investigación.

Factores Clave que Influyen en el Tamaño Muestral

El tamaño de la muestra no solo depende de consideraciones estadísticas, sino también de factores no estadísticos, como la disponibilidad de recursos, el presupuesto asignado y la capacidad del equipo de campo.

Para calcular el tamaño de la muestra de manera... Continuar leyendo "Cálculo del Tamaño de Muestra: Fundamentos y Fórmulas Esenciales para Investigación" »

Classificació de les oracions subordinades

Clasificado en Matemáticas

Escrito el en catalán con un tamaño de 3,4 KB

Oracions subordinades de relatiu

Amb antecedent

  • Especificatives: que (Subjecte, CD, CCT, C. Atributiva), prep + què (CC de cosa, CRV, CC, CN), prep + qui (CC de persona, CI, CRV, CC), prep + el qual.
  • Explicatives: que (Subjecte, CD, C. Atributiva, CCT), el qual (Subjecte, CD, C. Atributiva), cosa que (Subjecte, CD, C. Atributiva), prep + el qual (CI, CRV, CC, CN), per la qual cosa...

Sense antecedent

  • Qui, el que, aquell qui (Subjecte, CD, C. Atributiva), i el qui, prep + qui, el que (CI, CRV, C. Agent, CN, C. Adjectival, C. Adverbial, C. Predicativa).

Amb valor

  • Temporal: quan, en què, en el qual, expressió temporal + que.
  • Locatiu: on, resta en què ens vam...
  • Modal: com, la manera en què.

Oracions subordinades substantives

  • Declaratives: que (conjunció)
... Continuar leyendo "Classificació de les oracions subordinades" »

Análisis de Funciones, Contaminación Atmosférica y Optimización de Beneficios

Clasificado en Matemáticas

Escrito el en español con un tamaño de 2,91 KB

Análisis de Continuidad y Derivabilidad de una Función Definida a Tramos

Sea la función f(x) = x2 + x si x<0 ; x/x+1 si x ≥ 0

a) La función x2 + x es continua y derivable para x < 0; la función x/x+1 es, también, continua y derivable para x ≥ 0. Vamos a estudiar si la función f(x) es continua y derivable en x = 0.

Lím de x tiende a 0 por la izquierda de (x2 +x) = 0. Lím de x tiende a 0 por la derecha de x/x+1 = 0; f(0) = lím de x tiende a 0 de f(x) = 0. Continua en x=0.

Calculamos la función derivada: f’(x) = 2x+1 si x<0 ; 1/(x+1)2 si x>0.

f’(0izquierda) = 1. f’(0derecha) =1 ; f’(0izquierda) = f’(0derecha) ; Es derivable en x=0.

Luego la función f(x) es continua y derivable en R.

b) Vamos a ver si tiene asíntota... Continuar leyendo "Análisis de Funciones, Contaminación Atmosférica y Optimización de Beneficios" »

Clasificación de Variables en Investigación Científica: Independientes, Dependientes e Intermedias

Clasificado en Matemáticas

Escrito el en español con un tamaño de 2,51 KB

Tipos de Variables en Investigación

Considerando la relación entre variables, se distinguen los siguientes tipos fundamentales:

  1. Variable Independiente

    Es aquella que juega un rol de factor determinante, causal o de influencia sobre otra u otras variables. Estas variables se encuentran comúnmente en problemas explicativos, relacionales y experimentales. En estos últimos, suelen ser conocidas como variables estímulo.

  2. Variable Dependiente

    Es aquella que juega un rol de consecuencia, al ser determinada, originada o influida por la variable independiente. Esto implica que no pueden existir variables dependientes sin las independientes. Si consideramos el criterio de tiempo, las variables independientes son conceptualmente "más antiguas" que las

... Continuar leyendo "Clasificación de Variables en Investigación Científica: Independientes, Dependientes e Intermedias" »

Guía de Cálculo: Derivadas, TVM y Optimización de Funciones

Clasificado en Matemáticas

Escrito el en español con un tamaño de 3,13 KB

TVM (Tasa de Variación Media)

Definición y Cálculo

TVM se define como el cambio promedio en una función sobre un intervalo dado. La fórmula general es:

TVM[a,b] = (f(b) - f(a)) / (b - a)

Ejemplo:

Calcular la TVM de f(x) = 1/x en el intervalo [1,3]:

TVM[1,3] = (f(3) - f(1)) / (3 - 1) = (1/3 - 1/1) / 2 = -1/3

También se puede calcular la TVM usando intervalos de la forma [a, a+h]:

TVM[a, a+h] = (f(a+h) - f(a)) / h

Ejemplo con Intervalo [a, a+h]

Calcular la TVM de f(x) = -x^2 + 5x - 3 en el intervalo [1, 1+h]:

TVM[1, 1+h] = (f(1+h) - f(1)) / h

= (-(1+h)^2 + 5(1+h) - 3 - (-1^2 + 5(1) - 3)) / h

= (3 - h) / h

Esta expresión final permite sustituir diferentes valores de h para obtener la TVM en intervalos cercanos a 1.

Derivada por Definición

La derivada... Continuar leyendo "Guía de Cálculo: Derivadas, TVM y Optimización de Funciones" »

Explorando la Parábola, Elipse e Hipérbola: Ecuaciones y Elementos Clave

Clasificado en Matemáticas

Escrito el en español con un tamaño de 2,95 KB

Parábola, Elipse e Hipérbola: Ecuaciones y Elementos

Parábola

Ecuaciones con vértice en el origen cuando la parábola está hacia la derecha:

y2=4px

Elementos:

  • "izquierda"
  • El parámetro se determina con las ecuaciones que te dan:

y2=-4px

  • "arriba"
  • Ejemplo: x2=-4py

y2=10x p=10

  • "abajo"

y2=4px

4x2=-4py

El lado recto vale 4p.

Ecuaciones de parábola con v(h,k)

  • Vertical: (x-h)2=4p(y-k)
  • Horizontal: (y-h)2=4p(x-k)

Fórmulas:

P. VerticalP. Horizontal
v(h,k)V(h,k)
f(h,k+p)F(h+p,k)
d=y=k-pD->x=h-p
lr=4pLR=4p
E->x=hE->y=k
Ecuación general de una parábola: Para tabular
  • Horizontal: ax2+bx+y+c=0 y=ax2+bx+c
  • Vertical: ay2+by+x+c=0 x=ay2+by+c

Elipse

Ecuación canónica cuando está en el origen:

x2/a2 + y2/b2 =1

Elementos:

  • Focos: (+ C,0)
  • Excentricidad: c/a
  • Eje mayor=2a
  • LR= 2b2/
... Continuar leyendo "Explorando la Parábola, Elipse e Hipérbola: Ecuaciones y Elementos Clave" »

Galicia na Baixa Idade Media: Crise, Transformación e Resistencia Cultural

Clasificado en Matemáticas

Escrito el en gallego con un tamaño de 3,71 KB

Galicia a fins da Idade Media

Concorda un certo número de historiadores en sinalar o século XV como un momento determinante na historia do noso país. E isto por un dobre motivo: porque os acontecementos que nesa época tiveron lugar determinan a súa proxección durante a Idade Moderna; e porque a denominada por eles "frustración do século XV" viría condicionar o devir de Galicia ata a actualidade.

O Reino de Galicia na Coroa de Castela

En 1230, Fernando III reuniu definitivamente, baixo un só cetro, os territorios de Galicia-León e Castela. Ademais, a acción conquistadora permitiulle ao monarca ampliar os seus dominios logo da toma de Córdoba e Sevilla. A partir dese momento, tan só o reino de Granada ía permanecer, ata 1492, como... Continuar leyendo "Galicia na Baixa Idade Media: Crise, Transformación e Resistencia Cultural" »

Propiedades de los determinantes en las matrices

Clasificado en Matemáticas

Escrito el en español con un tamaño de 1,1 KB

Propiedades de los determinantes:

  1. El determinante de una matriz es igual al de su traspuesta.
  2. Si una matriz cuadrada tiene una fila/columna de ceros, su determinante es 0.
  3. Si una matriz cuadrada tiene dos líneas paralelas iguales, su determinante es 0.
  4. Si una matriz cuadrada tiene dos filas proporcionales, su determinante es 0.
  5. Si una matriz tiene una línea que es combinación lineal de las demás paralelas, su determinante es 0.
  6. Si se permutan dos líneas paralelas de una matriz cuadrada, su determinante cambia de signo.
  7. Si hay una suma en un determinante, se puede separar en dos determinantes y sumarlos.