Teoremas Clave del Cálculo Diferencial e Integral: Aplicaciones y Demostraciones
Clasificado en Matemáticas
Escrito el en español con un tamaño de 3,97 KB
Teoremas Fundamentales del Cálculo
Teorema de Bolzano
Si f es una función continua en un intervalo cerrado [a, b] y el signo de f(a) es distinto del signo de f(b), entonces existe al menos un punto c ∈ (a, b) tal que f(c) = 0.
El teorema establece que si los puntos (a, f(a)) y (b, f(b)) de una función continua están en diferentes lados del eje OX, entonces la gráfica de la función corta al eje OX en al menos un punto. Si consideramos la ecuación f(x) = 0, con f en las hipótesis de Bolzano, el teorema garantiza la existencia de al menos una solución (raíz) de la ecuación en el intervalo (a, b).
El teorema de Bolzano garantiza que al menos existe un punto que cumple que f(c) = 0, pero no dice que ese punto sea único; puede darse el... Continuar leyendo "Teoremas Clave del Cálculo Diferencial e Integral: Aplicaciones y Demostraciones" »