Fundamentos do Cálculo Diferencial: Teoremas e Conceptos Clave
Clasificado en Matemáticas
Escrito el en español con un tamaño de 3,86 KB
Teoremas Fundamentais do Cálculo Diferencial
Teorema de Weierstrass
Se unha función é continua nun intervalo pechado, entón ten un máximo e un mínimo en dito intervalo.
Teorema de Bolzano
Se unha función é continua en [a,b] e toma valores de signo contrario nos extremos, entón existe polo menos un punto c en (a,b) tal que f(c)=0. Xeométricamente, quere dicir que existe un punto no que a gráfica da función corta o eixo OX.
Teorema de Rolle
Se f(x) é continua en [a,b], derivable en (a,b) e f(a)=f(b), entón existe polo menos un punto c en (a,b) tal que f'(c)=0. Xeométricamente, quere dicir que existe un punto c en (a,b) tal que a tanxente á curva pasando por (c,f(c)) é paralela ao eixo OX.